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CURRENT DISTRIBUTION IN A FLAT MAGNETOHYDRODYNAMIC CHANNEL
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In a suong magnetic field the ions as well as the electrons acquire
Larmor rotation. Ift this case the electric field in the channel and its
integral characteristics depend both on the geometry of the channel
and the external magnetic field strength, as well as on the physical
state and chemical composition of the moving medium. Phenomena
‘occur which are observed in a channel when only the spiral motion

of the electrons is taken into account (current concentration on the
ends of the electrodes, distortion of the streamlines in the center of
the channel etc.).

However, the presence of ion "slipping” exerts a much more marked
effect on the integral characteristics of channels, Thus, for example,
the power of a magnetohydrodynamic generator in a strong magnetic
field becomes constant and remains so as the field increases still
further. This property of an energy converter is explained by the fact
that the internal resistance of the generator has a square law depen-
dence on the magnetic field.

Another important phenomenon is connected with the *slipping™ of
ions. In a strong magnetic field the Hall elecwomotive force dis-
appears, the elecwrical conductivity of the medium becomes a scalar
instead of being a tensor, and the current distribution pattern in the
channel assumes the same form as in the case in which there is no
Larmor rotation of the elecwons. The electrical conductivity of the
medium is then taken to mean its effective value which is a function
of the magnetic field, In the present paper the task of finding the cur-
rent distribution in a channel is reduced to solving a boundary value
problem for a special class of periodic functions. For this we use the
theory of boundary-value problems for the class of automerphic func-
tions,

§1. In the solution of the problem we assume that
the magnetic Reynolds number R, is much less than
unity, so that the induced magnetic field is not taken
into account. The external magnetic field H(0, 0, Hy)
in the channel —w < x < =, 0 < y < h of the magneto-
hydrodynamic generator with symmetrically placed
electrodes (Fig. 1) is taken to be uniform and in a
direction normal to the flow of the medium v(u(x,y),
v(X,y),0).

In a strong magnetic field Ohm's law is written in
the form [1]
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Here j is the current density vector, ¢(X,y) isthe
electrostatic potential, H is the magnetic field strength
vector, o is the electrical conductivity of the medium
in the channel, wg and wj are the cyclotron frequen-
cies of the electrons and ions, respectively, tg! and
;! are the effective collision frequencies of the elec-
trons and ions, o, weTq, and w;7j are constants.

Projecting components of (1.1) onto the coordinate
axes and solving the resulting system of equations
for the current components j; and jy, we have after
some reduction
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Considering Eq. (1.2) together with the condition
for current continuity, for the assumptions outlined
above, we have

8j [ 02+ 0], 9y =0 (1.3)
and representing the velocity in the form

u = /oy, v = — oz , (1.4)

we obtain the harmonic function

My y) = A+ b)) =0 (a=Z +25). (1.5)

The velocity can always be represented in the form
of (1.4) when the medium in the channel can be re-
garded as incompressible (divv = 0 and then (x,y)
is the stream function), or when the flow is rectilinear
v(u(y), 0, 0), in which case
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The components jy and jy of the electric current-
density vector are expressed in terms of the function

X(X.y)
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Thus the problem of finding the current in the
channel is reduced to determining the function x(x,y).

Let us now formulate the boundary conditions. The
channel walls are taken to be impenetrable and made
of perfect materials (ideally conducting electrodes
and ideal insulators). The normal component of the
current is equal to zero at the nonconducting walls,
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and the tangential component of the electric field is
equal to zero at the conducting walls; moreover, the

k4
~L+ih 4 I+ih
c d
©H P
/
v
a b
-7 q 4
Fig. 1

hydrodynamic conditionv = 0 is satisfied atthe channel
walls which are both impenetrable and motionless.
Thus at the insulators

. % 9,7, Y 0 -
]U—O or 6—y+iWW—O’ (1.7)

at the electrodes
v=0, 0p/0x=0 or dy/oz=0; (1.8)

and at infinity
j=0. (1.9)
To solve problem (1.5), (1.7)—(1.9), the theory of
the Riemann boundary problem for automorphic func-

tions is employed.
We now introduce the function

W) =U(z,5) + iV (z, §) =
= Oyfox — idyfoy (=o+iy) (1.10)

which is analytic within the strip 0 < Imz =h, and
which makes it possible for the initial directional de-
rivative problem to be reduced to a Riemann-Hilbert
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boundary problem with discontinuous coefficients for
the strip.
We substitute the variables

E=mzlh (z=s+iy, L=E+in), (1.11)

whereh is the channel width. Substitution (1.11) changes
the geometric scale in the complex-variable plane
and as a result we obtain a strip of width 7. The end
points of the electrodes a, b, ¢, and d, respectively,
become points with the coordinates

A= —nlh, B=ualh, C=—nljh+ inr,

D =nlfh+ in . (1.12)

For the function

W@ =W(@=U(E 1+ V. E 1, (1.13)

from boundary conditions (1.7)—(1.9) we obtain the

following Riemann-Hilbert boundary problem in the
strip 0 =< Im¢ < 7 (subscripts are omitted in what
follows):
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Here L' denotes the segments AB and CD, and L" denotes the re-
maining portion of the straight lines =0 and n = 7; the positive

direction for encircling the strip is taken so that the interior of the
strip 0 < Im { < # remains always on the left,
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Problem (1.14} is reduced to a Riemann boundary -value problem
for singly periodic functions of period 2w, This is a particular case of
the Riemann boundary -value problem for automorphic functons [2,3].

Formulation of the Riemann boundary-value problem involves the
inwoduction of the function W( ©) which is the complex conjugate of
the function W(Z) at points where the values of £ are complex con-
jugates. The strip ~m =Im¢ = is taken to be a fundamental region
of the zeroth kind for the singly periodic group generated by the
wansformation py(§)=¢ + 2wk, The fundamental prime invariant of
the group is the function exp £, which is bounded at the left end of
the strip and has a pole of the first order at the other end of thestrip.

The Riemann problem corresponding to the Riemann-
Hilbert problem (1.14) has the form

VHt) = —¥(t) at I
tel’+1L7),
¥ (1) = 1+ 01,07, + 0,7,
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lim¥C)=0 as jgl-o0. (1.15)
In accordance with the physical conditions for the
concentration of current near the ends of the elec-
trodes, the solution of problem (1.15) is constructed
as a class of functions with integrable singularities

at points A, B, C, and D and bounded at the ends of
the strip
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where C; is a real constant whose value will be de-
termined below. The function ¥(¢) denotes the branch
for which

Hm W (L) e* = (—1)°C;  as |z}~ (1.18)

is valid.
Rewriting Ohm's law in complex form
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and taking formulas (1.10), (1.15)—(1.19) intoaccount,
we find the required current distribution in a plane
channel:
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The formulas which have been obtained enable us
to calculate the integral characteristics of the gen-
erafor.
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The total current I, flowing through the generator
load, is given by the formula

b
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where s is the width of the electrodes (the channel
height).

The internal voltage drop between the electrodes
is found from the formulas
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Here & istheelectromotiveforceand 2¢ ¢ is the vol-
tage between the electrodes.
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if formula (1.20) is employed, the first relation of
(1.23) may be reduced to the form
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The value of the constant C, is obtained from the
equation

&—29,=1Q, or &—IQ.=IQ. (1.26)

Here Qy, is the internal resistance of the generator,
and ; is the generator load. Substituting the value
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of the current I determined from formula (1.21) into
(1.26), we have
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The internal resistance of the generator is given
by the formula
g—29,

Qp=—7

— Ag(l,h,8)+ Ay (L k, B)

5B (L, I, 8) [(1 + 0,7, 0T:)*+ 0,272 . (1.28)

When the constant C, and the internal resistance

Qp have been found, it is a simple matter to calculate
the other integral characteristics of the generator
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[4—6]: the electrical power N = 2¢,I and the Joule
dissipation in the channel Q = I & — N. Theseformulas
can be written in a simple and clear form if we in-
troduce the load parameter

29, Q
T T T 0<<e<y). (1.29)
We then have
g %2
I=(0—~q¢) 5, N=q(l— —,
=g =9
2
Q= —q)zgé. (1.30)
b

§2. It is clear that the electrical characteristics
of a magnetohydrodynamic generator are basically
determined by the value of the internal resistance
Qp (for fixed & and q). According to (1.28), Oy, in
the general case depends on the geometric dimensions
of the generator (I, h, and s), on the physical proper-
ties of the conducting medium in the channel, and on
the strength of the external magnetic field H. Theo-
retically Qp may vary from zero to infinity, and the
generator characteristics vary accordingly.

As mentioned above, the boundary-value problem (1.5), (1.7)~-
(1.9) can be solved by other methods. For example, the strip can first
be ansformed to a half-plane, and then to the interior of a paral-
lelogram by means of a Schwarz-Christoffel integral [4-8], Moreover,
if we inwoduce an effective conductivity o, and the effective Hall
parameter w,T, as given by

s 0T

e e
% T e e QT = T Lt .
14 O,T,0.7T, 1+ e,7,0,7;

G (2.1)
and set them in the inital equations (1.6) and in boundary conditions
(1.7), we obtain the boundary-value problem solved in [4,6, 8], We
can thus use the results of these papers to analyze the characteristics
of magnetohydrodynamic energy converters when "slipping" of ions
oceurs.

It is convenient to use approximate formulas to
find the internal resistance of the generator. One
such formula can be derived from (1.28) by calculating
the improper integrals (1.22) and (1.25) according to

the method of residues

Q=1 [(1+ 7022 +
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The value of the coefficient v is definedby the chem-
ical composition of the conducting medium and its
physical state. For the cases which are of most interest
in practice, vy varies within the limits

T = (l)i'fi /merezio-l—_ 10—4 .
If weTe = 0, expression (2.2) reduces to the form

“1‘_ 2exp (—nl/2h)
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p =

According to (1.28) the exact expression corre-
sponding to this case is

1 As(LB)FAs(LRE) 2 K(k)

Q=3 AL(l, R) T o5 K(K)
k= exp (—2al /)
G Vims ) (2.4)

where K(k) is an elliptic integral of the first kind.

Curves of os{l, are given in Fig. 2 to illustrate
how the internal resistance of the generator depends
on the linear dimensions of the channel. The solid
curve corresponds to the exact formula (2.4), and
the dashed curve to the approximate formula (2.3).
The approximate expressions (2.2) and (2.3) may be
used for intermediate values of I /h.

In one case, when

sh (mi/k) =1 and yh~0.28, (2.9)

the integrals A; (i =1,2,3) in (1.28) reduce to beta-
functions and the expression for the internal resistance
assumes the very simple form

Q= [+ 700+ 02t ® . (2.6)

It is clear from this case that when the ions have
spiral paths, the value of £}, increases as the param-
eter weTe increases, and the greater the value of
the coefficient v, the larger this rate of increase
(Fig. 3).

When wiTi = 0 and weTe > 1, Qp is an almost linear
function of the parameter we7e for small values of
1/h, and becomes a quadratic function of weTe for
large values of I/h. This property of the internal
resistance Qp can be explained physically by the fact
that ideally conducting electrodes tend to short-circuit
the Hall emf. The screening of the Hall emf naturally
decreases for shorter electrodes (and in the limit
case of point electrodes disappears entirely). Thus,
segmented electrodes are sometimes used to improve
the characteristics of magnetohydrodynamic energy
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converters for wgre = 0. The situation is quite dif-
ferent when the ions as well as the electrons have
spiral paths. An increase in the effective electrical
conductivity o, = ¢/(1 + 'ywéTZe) is now also a con-
tributing factor to the increase in @}, with increasing
weTe. In this case the internal resistance of the gen-
erator is a quadratic function for wgre » 1 evenwhen
there is no Hall emf in the channel.

We also note that since the generator emf & (€ =
= ¢"1s7!HQ,, where Q, is the rate of flow for the
medium in the channel) is a linear function of the
magnetic field, as weTe increases because of the
magnetic field, when witi = 0 the generator power
N has an absolute upper limit according to (1.30),
which is determined by the ratio wirj/weTe-

It has already been noted that determining the integral charac-
teristics of the magnetohydrodynamic generator (which, according
to (1.29)-(1.30), is the same as finding the internal resistance) for
arbitrary values of wete, wiT;, and?/h involves tedious calculations
of the improper (but converging) integrals (1,22) and (1.25). However,
it is possible in principle to determine the generator characteristics
on a model, for which we may use a semiconducting slab situated
in a magnetic field. For these purposes it is convenient to use a slab
of finite dimensions, in the form of a round disk, for example, with
elecodes connected to a sowrce of electric cuwrrent [9] It is a simple
matter to establish the correspondence between the geometric param-
eters of the channel and of the round semiconducting disk by means
of conformal mapping (the appropriate tansformation is given by
the function w = tgl/ 2ih(l ~ 4z/7). The over-all resistance of the
slab is at the same time shown to correspond to the internal resistance
of the generator. The resistances become identical when the physical
constants of the semi-conducter and the conducting medium in the
channel are the same,

§3. The distribution of electric current in the
channel exhibits a marked dependence on the Hall
parameter weTe and on the coefficient y. Wheny = 0
and weTy # 0 (no "slipping™ of ions) we know that the
streamlines are distorted in the central zone of the
channel owing to the anisotropy of conductivity in the
medium, and concentrate mainly at the ends of the
continuous electrodes as a result of the screening
of the Hall emf by the ideal conductors. The quantita-
tive characteristics of these phenomena are determined
by the Hall anglere = arctgweTe (0 = me < 7/2), which
is formed between the electric field-strength vector
and the current-density vector.

The apperance of ion Larmor rotation leads to a decrease of the
Hall angle. Curves for me as a function of the Hall parameter wefe,
constructed from formula (1.17) for various values of y, are given
in Fig, 4. Inspection of the curves shows that when there is more
“slipping" of the ions, the Hall angle me decreases more rapidly as
the parameter were increases, The angle we assumes its maximum
values when the condition were = ),-1/2 is satisfied. As me decreases,
the anisotropy of conductivity and the Hall emf in the channel dis-
appear,

We shall now consider how the normal component
of the electric field at the electrode is distributed
in this case. One particular case of current distribu-
tion for weTe = 0 and wjty # 0 was treated in [10] by
the method of finite differences. Let us assume that
1/h ~ 0.28. We then have from (1.20), after some
transformations,

Cis(1 410212 (1 4 sha) ™
2[(1 + 102722 + 02T2] (1 — sha)/=®

Jy (®) =
(— 0.88 < < 0.88), (3.1}

Determining the constant from (1.21) and substitut-
ing it into (3.1), we obtain

Lo 2oy (1 4 sha)"fere
1) = FORT T2l G — 280 (1—shay=

(—0.88 <% <<0.88) » (8.2)

where B(p, q) is a beta-function; I is the total current
flowing through the electrode.

Curves of j/1 constructed from this formula are given in Figs. 5,
6, and 7, respectively, for three values of the Hall parameter wer, =
=3, 10, and 100 for various y.

As were and y increase, the distribution of the normal current
component tends to the case were = 0(dashed curve in Fig. 7).

When 7e = 0 and wgTe is increased, the internal
resistance of the generator increases. This follows
from (1.28)

k=exp(—2nl/h)
BE=VT1—-Fk

0 — L+ro2 2K (k) (
T s K (k)Y

). (3.3)

Here, as in (2.5), K(k) is a complete elliptic in-
tegral of the first kind. The numerical factor 2 in
(3.3) can be eliminated by the transformation formula
for elliptic integrals

K= KR K00 (22E).

After transformation we obtain

1yl K (k) ky=thal/kr
%= ko v

§4, Theelectric field in a channel with many sections can be
calculated easily by generalizing the formulas of §1,

Let a finite number of elecrodes be situated on the channel walls,
without specifying their dimensions or connecting circuit. The initial
statements and the formulation of the problem remain as before, The
field in such a channel was calculated by I. M, Tolmach and N, N.
Yasnitskaya [11], when there is no ion Larmor rotation.

The current distribution in the channel when ion "slipping” is
taken into account is given by the following formula:

F(3) =Ty (= y)— iy (= V)=

_ —{—1)*s p! nz )
T i vesr? e, \exp ) X

5 [ oor RE ‘ 7z AT
X H [\exp S T exp ak> (exp ~ —exp b, )1 X
k=1
it nz ek
X [(exp Tz — exp bk) (exp ~j — exp ak’)J , (4.1)

nz nz
p (exp —h—) = Cyp g XD ((2p —1) —h-> +

nz nz
+ CyppeXp ((ZP—Z)T)-% <4 Crexp - >

@ 1
g=-—arcty — 5=
1 147 melrf '
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Here ayby and akbi’'(k =1, ..., 2p - 1) are the end points of
the electrodes on the two channel walls. The real constants Ck (k=
=1, ..., 2p = 1) in formulas (4.1) and (4.2) are still unknown, and
it is these which allow the solution to be fitted to a particular con-
crete case. To find these constants we must take into account the
circuit which connects the electrodes to the load.

The author is grateful to A, B, Vatazhin for a useful discussion

of the paper,
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